
Fall 2023

General Physics: Electromagnetism, Correction 6

Exercise 1 :

Find the equivalent capacitance between the points a and b for the group of capacitors connected
as shown below. Take C1 = 5.00 µF, C2 = 10.00 µF and C3 = 2.00 µF. What charge is stored on
C3 if the potential difference between the points a and b is 60.0 V?

Figure 1: Group of capacitances connected in series and in parallel.

Solution 1 :

In the upper part of the circuit, the C1 and C2 capacitors on each side of C3 are connected in
series. The equivalent capacitance C12 for these pairs can then be calculated in the following way:

C12 =

(
1

C1

+
1

C2

)−1

=
C1C2

C1 + C2

=
5.00µF · 10.00µF
5.00µF + 10.00µF

= 3.33µF. (1)

The C1-C2 pairs are parallel to the C3 capacitor, therefore the capacitance of the upper part of
the circuit, Cup

eq is found to be:

Cup
eq = C12 + C3 + C12 = 3.33µF + 2.00µF + 3.33µF = 8.66µF. (2)

In the lower part of the circuit, the two C2 capacitors are in parallel. The equivalent capacity
of the lower part of the circuit reads:

Cdown
eq = C2 + C2 = 10.00µF + 10.00µF = 20.00µF (3)

Finally, the upper section is in series with the lower section and the total equivalent capacity
becomes
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Ceq =

(
1

Cdown
eq

+
1

Cup
eq

)−1

=
Cdown

eq Cup
eq

Cdown
eq + Cup

eq
=

8.66µF · 20µF
8.66µF + 20.00µF

= 6.05µF (4)

Capacitors in series carry the same charge as their equivalent capacitor. Therefore, the upper
section (8.66µF) and lower section (20.00µF) carry the same charge as a 6.05µF capacitor:

Qup = Qeq = Ceq∆V = 6.05µF× 60V = 363µC (5)

The upper section consists of two Cs(3.33µF ) capacitors and C3 capacitor that are in parallel.
Now the voltage is the same as that across a 8.66µF :

∆V3 = ∆V up =
Qup

Cup
eq

=
363µC

8.66µF
= 41.9V (6)

The charge stored in C3 is equal to:

Q3 = C3∆V3 = 2.00µF× 41.9V = 83.8µC (7)

Exercise 2 :

Consider the configuration shown in the figure below. Find the equivalent capacitance, assuming
that all the capacitors have the same capacitance C.

Figure 2: Combination of Capacitors
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Solution 2 :

To solve this exercise, one can proceed as in the previous exercise. The circuit is divided in
three rows where the capacitors are in series.

The total capacitance of the upper row is simply C1 = C.

The total capacitance of the central row is given by

C2 =

(
1

C
+

1

C

)−1

=
C

2
. (8)

The total capacitance of the lower row is given by

C3 =

(
1

C
+

1

C
+

1

C

)−1

=
C

3
. (9)

Finally, the total capacitance of the circuit is given by the parallel of C1, C2, and C3, that read

Ceq = C1 + C2 + C3 =
11

6
C. (10)

Exercise 3 :

Two dielectrics with dielectric constants κ1 and κ2 each fill half the space between the plates of
a parallel-plate capacitor as shown in the figure below. Each plate has an area A and the plates
are separated by a distance d. Compute the capacitance for the system.

Figure 3: Capacitor filled with two different dielectrics

Solution 3 :
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Since the potential difference on each half of the capacitor is the same, we can treat the system
as being composed of two capacitors connected in parallel. Thus, the capacitance of the system is

C = C1 + C2. (11)

We can now compute Cj with the help of the formula Cj = κjε0A/2d, j = 1, 2. The capacitance
for the system reads

C =
ε0A

2d
(κ1 + κ2). (12)

Exercise 4 :

Consider a conducting spherical shell with an inner radius a and outer radius c. Let the space
between two surfaces be filled with two different dielectric materials so that the dielectric constant
is κ1 between a and b, and κ2 between b and c, as shown in the figure below. Determine the
capacitance of this system.

Figure 4: Spherical capacitor filled with dielectrics.

Solution 4 :

The system can be treated as two capacitors connected in series, since the total potential dif-
ference across the capacitors is the sum of potential differences across individual capacitors.

First, we derive the capacitance for a spherical capacitor of inner radius r1 and outer radius
r2 filled with dielectric with dielectric constant κ, and with charges +Q and −Q on the inner and
outer sphere. To do this, we use the Gauss law. We have that∫

∂V
E⃗ · dσ⃗ =

Q

κε0
, (13)
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that leads to 4πr2E(r) = Q/κε0 if r1 < r < r2. The total potential difference between r1 and r2
reads

V = −
∫ r2

r1

drE(r) =
Q

4πκε0

(
1

r1
− 1

r2

)
. (14)

If we finally apply the definition of capacitance C = Q/V we get

C = 4πε0κ
r1r2

r2 − r1
. (15)

The total capacitance then reads

Ceq =

(
1

C1

+
1

C2

)−1

=

(
b− a

4πε0κ1ab
+

c− b

4πε0κ2cb

)−1

=
4πε0κ1κ2abc

κ2c(b− a) + κ1a(c− b)
. (16)

Notice that if κ1, κ2 → 1 one gets

C → 4πε0ac

c− a
, (17)

that is the capacitance for a spherical capacitor of inner radius a and outer radius c.

Exercise 5 :

Consider an air-filled parallel-plate capacitor with one plate connected to a spring having a force
constant k, and another plate held fixed. The system rests on a table top as shown in the figure
below. If the charges placed on plates a and b are +Q and −Q, how much does the spring expand?

Figure 5: Capacitor connected to a spring.

Solution 5 :

The spring force acting on plate a is given by the Hooke’s law, Fs = −kx.

At the same time, the electrostatic force due to the electric field within the capacitor reads
Fel = QE = Qσ/(2ε0) = Q2/(2ε0A), where σ = Q/A and A is the capacitor’s area.

Since the system is at rest, the Newton’s second law imposes Fs + Fel = 0, that gives, x =
Q2/(2kAε0).

5



Exercise 6 :

We consider a parallel-plate capacitor with plate separation d and plate area A.

1. Find the capacitance of the device when an uncharged metallic slab of thickness a is inserted
midway between the plates. What is the capacitance in the limit where a → 0?

2. Find the capacitance of the device when a slab of dielectric material of dielectric constant k
and thickness fd is inserted between the plates, where f is a fraction between 0 and 1. Express
the solution in terms of the capacitance C0 in the absence of the dielectric (C0 = ϵ0A/d).

Solution 6 :

1. The charge present on one plate of the capacitor induces a charge of equal magnitude and
opposite sign on the near side of the slab. Consequently, the net charge on the slab remains
zero and the electric field inside the slab is zero. The planes of charge on the metallic slab’s
upper and lower edges are identical to the distribution of charges on the plate of the capacitor.
Therefore, we can model the edges of the slab as conducting planes and the bulk of the slab
as a wire. As a result, the device is equivalent to two capacitors in series each having a plate
separation (d− a)/2.

Figure 6: Left panel: A parallel-plate capacitor of plate separation d partially filled with a metallic
slab of thickness a. Right panel: The system is equivalent to two capacitors in series each having
a plate separation (d− a)/2

1

C
=

1

C1

+
1

C2

=
1

ϵ0A
(d−a)/2

+
1

ϵ0A
(d−a)/2

. (18)

Solving for C gives the total equivalent capacitance,
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C =
ϵ0A

d− a
. (19)

In the limit where a → 0

C = lim
a→0

(
ϵ0A

d− a

)
=

ϵ0A

d
. (20)

This result indicates that we can insert an infinitesimally thin metallic sheet between the
plates of a capacitor without affecting the capacitance.

2. Similarly to the previous question, the device can be modeled as series combination of two
capacitors. One capacitor has plate separation fd and is filled with dielectric; the other one
has plate separation (1− f)d and has hair between its plate. The total capacitance

1

C
=

1

C1

+
1

C2

=
1

κϵ0A
fd

+
1

ϵ0A
(1−f)d

(21)

We have

1

C
=

fd

κϵ0A
+

κ(1− f)d

κϵ0A
=

f + κ(1− f)

κ

d

ϵ0A
, (22)

Solving for C gives the total equivalent capacitance

C =
κ

f + κ(1− f)

ϵ0A

d
=

κ

f + κ(1− f)
C0. (23)

Figure 7: Left panel: A parallel-plate capactior of plate separation d filled with a dielectric of
thickness fd. Right panel: The system is equivalent to two capacitors in series, one with separation
fd, the other one with separation (1− f)d.
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